BOX GUTTER AND RAIN WATER HEAD DESIGN TO AS/NZS 3500.3:2015

Industrial Building for Joe Blogs
111 Blogs Lane Blogsville

Calc Total Vertical rise (Av)

Total Vertical rise (Av) $=[$ Roof horiz Area * tan(roof slope) $]+$ (Area of Vert face)
Total Vert Rise area LHS upper $=[111 * \tan (11)]+11$
Total Vert Rise area RHS upper $=[0333 * \tan (3)]+33$
Total Vert Rise area for all upper $=50.5+32.6$
Total Vert Rise area LHS lower $=[222 * \tan (22)]+22$
Total Vert Rise area RHS lower $=[44 * \tan (4)]+4$
Total Vert Rise area for all lower $=111.7+7.1$

Av_Lhs_u	$=32.6$	sq.m
Av_rhs_u	$=50.5$	sq.m
Av_u	$=83.1$	sq.m
Av_Lhs_L	$=111.7$	sq.m
Av_rhs_L	$=7.1$	sq.m
Av_L	$=118.8$	sq.m

Page 1:

Calculate Total Horizontal areas (Ah)

Total Horiz area for all LHS $=111+222$
Total Horiz area for all RHS $=0333+44$

Ah_Lhs	$=333$	
Ah_rhs	$=377$	
		sq.m
	$=118.8$	
sq.m		

Find worst wind direction
$=$ Largest vertical Area facing the wind
$=$ The larger of $\left(\mathrm{Av}_{-} \mathrm{u}\right)$ and $\left(\mathrm{Av}_{-} \mathrm{L}\right)=A v_{-}$
$=$ from Upper \quad sq. m
worst wind direction (blows on this face), therefore wind direction

Find Cment area LHS with wind from Upper
$\left.=A h _L h s+1 / 2\left(A v v_{-} L h s _L-A v _L h s _u\right)\right)$

$$
\text { Ac_LHS }=372.55 \quad \text { sq.m }
$$

Find Cment area RHS with wind from Upper

$=$ Ah_rhs $+1 / 2\left(\right.$ Av_rhs_L $_{-}$Av_rhs_u) $)$
Design cment area for box gutter worst case being Ac_RHS
Design cment area for Sump and DP
$=\left(\mathrm{Ah} _\mathrm{Lhs}+\mathrm{Ah} _\right.$rhs $)+1 / 2\left(\mathrm{Av}_{-} \mathrm{L}-\mathrm{Av} _\right.$u $)$

Design Storm Intensity (ARI 100)
Design Flow for $\mathrm{BG}=(\mathrm{Int} *$ Area $) / 3600$

Design Flow for DP and Sump $=($ Int * Area) $/ 3600$

Calculate Design Flows

$$
\begin{array}{ll}
\text { Ac_RHS }=398.7 & \text { sq.m } \\
\text { Ac_BG }=398.7 & \text { sq.m }
\end{array}
$$

$$
\begin{aligned}
& =\frac{333+377+0.5 *(118.8-}{83.1)} \\
\text { Ac_DP } & =727.85
\end{aligned}
$$

I	$=111$	
	$=(111 * 398.7) / 3600$	
$\mathrm{~mm} / \mathrm{hr}$		
Qbg	$=12.3$	
	$=(111 * 727.85) / 3600$	
$\mathrm{~L} / \mathrm{sec}$		
Qdp	$=22.4$	
$\mathrm{~L} / \mathrm{sec}$		

Note: Flow exceeds Code Requirement of $16 \mathrm{~L} / \mathrm{s}$. Therefore using formulas developed by CSIRO Division of Building Research, Technical Paper No 1. By K.G.Martin. And standard hydraulic formulas where applicable.

Page 2:

Box gutter width
Box gutter slope
from CSIRO (eqn 5) + slope adjustment (fig 3$)+$ add freeboard. Box Gutter Depth for free flow condition
down pipe and Oflow pipe size
from CSIRO appendix IV Theoretical Sump Depth
from critical depth formula (code fig I6(a), loc
from weir formula (code fig I8), Ht
loc + Ht
BG depth is the max of Ha and (loc+Ht)
loc <60 therefore From Note1(b) Fig I7 Datum for sump depth is D/S sole of OFlow channel

Wbg	$=600$	mm
	$=1: 200$	
Ha	$=114$	mm
dia	$=150$	mm
Hs	$=397$	mm
loc	$=34$	mm
Ht	$=92$	mm
	$=126$	mm
Dbg	$=126$	mm
Ds	$=\mathrm{Hs}+(60-\mathrm{loc})$	mm
Ds	$=423$	mm
Lso	$=200$	mm
Lsi	$=323$	mm
Ls	$=723$	mm

Page 3:

Summary Dwg (not to scale)

James Crint
Head Honcho
Hydraulix Dept.
m 0418111222

Page 4:

